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Abstract—When performing a separation of test results, coping 

with enormous high-dimensional data sets is necessary but 

problematic. The input of high-dimensional data, in which not a 

few elements are irrelevant or less relevant than others, usually 

lead to inadequate results. It is therefore useful to consult methods, 

which classify the individual dimensions of the data volumes 

according to their relevance. In this paper, we present the 

Principal Component Analysis (PCA) and a Self-developed non-

linear Data Analysis (SEDA), used on a complete data collection, 

as classification methods. Both analyzes are clarified using the 

same example. 

Keywords— Dimensional data reduction; Analysis of test results; 

Fault diagnosis. 

I.  INTRODUCTION 

In many areas of research, the analysis of test results 
regarding circuits or systems is necessary. Huge data sets of 
information and signals of countless redundant sensors of a 
system are characterized by criteria such as their amount, their 
complexity and their speed. Globally, companies and research 
institutes strive to discover valuable information and correlation 
from the vast amounts of data that have so far been difficult or 
impossible to determine [1]. Very often, enormous, high-
dimensional data sets from experiments must be collected and 
analyzed. However, the input of high-dimensional data usually 
results in insufficient results in this manner [2]. It is therefore 
useful to use classification methods, which classify the 
individual dimensions of the data volume according to their 
relevance. In this paper, we consult and analyze the Principal 
Component Analysis (PCA) and the self-developed method 
named SEDA. 

II. PRINCIPAL COMPONENT ANALYSIS 

A. Definition 

The PCA is a variable-orientated, linear classification 
method for data reduction. The method uses linear structures 
enabling the reduction and interpretation of large multivariate 
data sets. This method allows the user to replace a number of 
original variables by a smaller number and it extracts relevant 
information from a given data set by reducing the dimension. By 
means of an orthogonal transformation, a new set of 
uncorrelated variables, the so-called Principal Components 
(PCs), is generated as a transformed database [3]. The newly 

determined PCs are linear combinations of the original 
variables. The first PC is so designed to be responsible for most 
of the variation in the original data and thus causing the 
reduction of the data size [4]. If the first PC describes the 
majority of the data variation, than this can also reduce the 
dimension of the problem. Through the transformation into PCs, 
the data sets can be graphically visualized and interpreted better. 

B. Mathematical derivation 

The PCA allows to obtain PCs or a transformed database 
(same abbreviation: PC) after entering the original database (D), 
with n-rows and m-columns (n x m-matrix) and performing five 
steps. First (step 1), a standardized database (S) is generated, 
which is column-wise mean-free, has column-wise value one as 
mean variation and occupies the same dimension as D. The 
target of this step (standardization) is to transform the various 
variables in the database so that they accept similar values and 
are directly comparable. Then (step 2), a correlated database (C) 
is generated, from which a correlation matrix (m x m-matrix) 
emerges, giving information about the relationships of 
variables. Further (step 3), the eigenvalues λj for j = 1 to m of the 
calculated correlation matrix are determined. The eigenvalues 
λj, characterizing general properties of linear images, are ordered 
accordingly to their size from large to small. Next (step 4), the 
eigenvectors Vj are determined with the help of the calculated 
and ordered eigenvalues λsj of correlation matrix C. Last (step 
5), the subsequent multiplication of the standardized data S with 
the eigenvector matrix V = (Vj) results in the transformed 
database PC. Thus, we have converted the original database D 
into PC, which has the same dimension of an n x m-matrix [5]. 
Here one speaks of an orthogonal transformation or a projection 
of the standardized database S onto the eigenvectors Vj, which 
are therefore called the coefficients of the PCs. Fig. 1 describes 
the PCA algorithm by means of a block diagram. In it, the 
derivation of the PCs is represented by the mathematical 
formulas required. 

However, the corresponding vectors PCj (n x 1-matrix) to the 
columns of PC are not all equivalent. They can be arranged 
depending on the size of the ordered eigenvalues λsj of the 
correlation matrix C. The information value of the variables 
decreases from PC1 to PCm. The following considerations are 
used to determine the variances of each PC. This should give us 
an idea of how the variances are related to the eigenvalues λsj. In 
general, the variance of PCj can be represented by means of (1).  
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Fig. 1. Block diagram of the PCA. 

  var(PCj) = 
1

n - 1
(PCj - (PCj

̅̅ ̅̅̅))
T
(PCj - (PCj

̅̅ ̅̅̅))  (1) 

T stands for transposed. The standardized matrix S is mean-

free, i.e. the averaging vector S = (0). It follows that PCj = S·(Vj̅) 

equals zero and thus the variance of PCj can further be calculated 
as defined in (2). 

 var(PCj) = 
1

n - 1
 (PCj

T · PCj) = 
1

n - 1
(S·Vj)

T
(S·Vj) (2) 

According to general mathematical matrix rules follows 
(S·Vj)T=Vj

T·ST and thus (3). 

  var(PCj) = 
1

n - 1
(Vj

T∙ST∙S∙Vj) (3) 

After conversion of the formula from step 2 (Correlation) 
from the block diagram (Fig. 1) one obtains (4). 

  ST·S = (n -1)∙C (4) 

Substituting (4) into (3) following (5) results. 

  var(PCj) = 
1

n - 1
(Vj

T·(n -1)·C·Vj) (5) 

Since correlation matrices are in general symmetrically and 
square, the eigenvectors Vj of correlation matrix C are 

orthogonal [5], i.e. VT = V-1, which is why (6) results the 
following way. 

  var(PCj) = 
1

n - 1
(Vj

−1 · (n - 1)·C·Vj) (6) 

After reducing the constant (n-1) and using (6) finally (7) 
results for the variance of a j-th PC. 

 var(PCj) = (Vj
−1·C·Vj) = λsj (7) 

So mathematically, it can be shown that the variance of a j-
th PC equals the j-th eigenvalue of the correlated database. 
Essentially, the PCA corresponds to a rotation of the coordinate 
system in the direction of maximum variance [5]. The first PC 
shows the greatest variance, since within the analysis the 
eigenvalues were arranged according to their size. Equation (8) 
follows accordingly, which reproduces the proportion of shared 
variance of the data. 

 
1

m
·λsj  = 

1

m
·var(PCj)  (8) 

Thus PCs with great variance represent interesting dynamics 
while PCs with low variance represent low noise and therefore 
not much of information of the original database gets lost, when 
PCs with low variance are ignored [6]. The following 
application example eases the understanding of the theory and 
mathematics of the PCA discussed so far. 

C. Example 

In many areas of research, error detection and prediction of 
the causes of early failure is necessary. For that, PCA is a very 
useful analysis tool. Experiments very often result in enormous, 
high-dimensional data sets, which need to be collected and 
analyzed in a proper way. 

Let us say a certain company produces and sells an electronic 
product, which consists of many digital and analog subsystems. 
Often their product "breaks" before the warranty period. The 
reasons for the early failure must be identified in order to achieve 
improvements in product production. Meanwhile, in many 
products an integrated chip stores important information about 
user- and product-behavior. Engineers can use these information 
as a database and filter the most important user variables, which 
are responsible for the early failure, by using the PCA. For this, 
the knowledge about user variables of functional, not early failed 
products is necessary to enable a separation of the variables. In 
this case, the user variables e.g. voltage, current, temperature, 
etc. are the eigenvectors and the products are the PCs. 

We demonstrate the PCA analysis through the following 
study: We consider a database of 900 data sets or objects and 68 
characteristics (user variables) that should represent 900 
different devices of the same product of a company. They are 
sorted according to their lifespan, so that the first 450 represent 
early failed products and the last 450 represent late failed 
products. The PCA-algorithms (Fig. 1) is then executed. Since 
the method bases on matrices, we used a self-written program in 
MATLAB. As result, the first four PCs have the largest 
eigenvalues and cover over 75% of the variance (data not 
shown). Next, it is useful to display the object distribution in a 
plot with respect to the PCs. For the graphic representation, the 
coordinates of the 900 objects, sorted according to lifespan, are 
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plotted with respect to PC1 and PC2 in a coordinate system with 
PC1 as x-axis and PC2 as y-axis. We use a clear 2D-graphic and 
obtain Fig. 2. This figure shows something interesting: From this 
simple representation, a first separation of the data between early 
and late failed can be observed. Although not all objects can be 
separated to a hundred percent and overlapping being avoided, 
a large part of the object distribution is specific. 

 

Fig. 2. Representation of the object data distribution for the first two PCs. 

In order to display the characteristics graphically, their 
coordinates are plotted. These are listed in eigenvectors, which 
are defined as coefficients of the PCs. In addition, the individual 
points in the plot are linked to the origin in order to obtain 
vectors of characteristics and thus better represent their location 
in the coordinate system (see Fig. 3). It is obvious, that some 
characteristics cannot be seen clearly, since overlapping occurs, 
which arise by the same coordinates in the eigenvectors. 

 

Fig. 3. Representation of the vectors of characteristics for the first two PCs. 

We now want to investigate what the causes of early and late 
failure are. To answer this question, we overlay the 
representations of object data distribution and vectors of 
characteristics (Fig. 2 and Fig. 3) in Fig. 4. This allows seeing, 
which characteristics are in which areas of the objects and thus 
possibly influencing the behavior of the devices. It is clear, that 
the characteristics M6, M7, M8, M9, M10, M24 and M25 clearly 
correlate with red objects and e.g. characteristics M4, M55, 
M57, M59 and M65 along the green object cloud (see Fig. 4). 

In order to confirm and investigate more precisely the above-
observed correlation of the mentioned characteristics with the 
object clouds, the entire database is reduced to some of these 

characteristics. This is followed by a re-execution of the PCA at 
the reduced database. As result, the statements made in Fig. 4 
are confirmed in Fig. 5. Here the overlap of some vectors of 
characteristics is also shown. 

 

Fig. 4. Representation of the object data distribution and vectors of 

characteristics for the first two PCs. 

 

Fig. 5. Representation of the object data distribution and vectors of 

characteristics of reduced database. 

III. SELF-DEVELOPED METHOD SEDA 

A. Definition 

The Self-developed Data Analysis (SEDA) is a self-defined, 
multi-dimensional analysis, which serves like PCA for data 
separation. SEDA executes its analysis in four steps, which are 
iteratively repeated in sequence, until complete data separation 
occurs. The following sections explain in detail the 
mathematical considerations of all four steps. In addition, a 
graphical representation (Fig. 7) is shown in analogy to PCA, 
and finally SEDA will be carried out on an example for a better 
understanding (see section IIIC). 

B. Representation and graphical vizualisation 

In the first step of SEDA, a given database with m-attributes 
and n-samples (objects) will be orthogonally transformed into a 
new set of uncorrelated variables. This can be done using the 



PCA. As a result, one obtains m-new variables, the PCs (see 
Chapter II) to be seen as the replacement of the original 
database. According to an additional feature (criteria e.g. 
lifespan), the original database is a compilation of two object 
groups each with m-characteristics. For a better understanding, 
these two groups are distinguished through their color: The first 
n1-objects are presented in red and the remaining n2-objects in 
green with a total number n = n1 + n2. Due to this separation, the 
m-PCs are displayed colored too. The goal is now to determine 
the PC with the best separation of the data. For this purpose, step 
two and step three of SEDA are used. 

In the second step of SEDA, the frequency distributions of 
the individual PCs are determined in the form of histograms. The 
principle of a histogram representation is the same principle of 
an analog-to-digital converter (ADC). For this purpose, the 
maximum and minimum value (pcjmax and pcjmin for j = 1 to m) 
is determined for each PC. In addition, a value for a number of 
bins (#Bins) is entered as input. This value defines an interval 
width ΔB (see (9)) in which the frequency of the individual 
values of the PCj (pcij for i = 1 to n) are classified with respect to 
the intervals Bink (see (10)) and under consideration of the 
colors (see Fig. 6). 

 ΔB = 
pcjmax  -  pcjmin

#Bins
 

 Bink ϵ [(k - 1)ΔB, kΔB] with k = 1, 2, …, 
#Bins

ΔB
 

 

Fig. 6. Graphical representation of the frequency distribution of the objects. 

The size of the #Bins should be below the dimensions n1 und 
n2 of the objects for the sake of clarity. The larger the value, the 
smaller the interval width ΔB and the more intervals Bink are 
necessary to divide the objects. This decreases the number of 
hits per Bink. 

In the third step of SEDA, the number of separated objects is 
determined based on the frequency distributions. This is 
determined for the red and green objects individually for each 
PC. This means, the number of red separated objects (# red-
separated) separated by the green objects is determined by 
summing the frequencies of the red objects under the condition 
of the exclusion of the green objects. The same applies to the 
determination of the separated green objects (# green-separated). 
Subsequently, the number of red and green separate objects can 
be summed and compared in tabular form for each PC. The PC 
with the largest value of separated objects has the best separation 

potential. After the determination of the PC with the best 
separation potential, the fourth step of SEDA now has to search 
out for this determined PC through all separated objects in the 
database. SEDA removes then these objects from the original 
database, resulting in a new database with nnew = n1new + n2new 
lines or objects (database-new). The new number of red and 
green objects is now described as in (11) and (12).  

  n1new = n1  - #red-separated 
n2new = n2 - #green-separated 

The four steps of SEDA are iteratively repeated until a 
complete data partitioning of all objects is achieved, i.e. 
mathematically as long as n1new and n2new are greater than zero. 
The following Fig. 7 shows a schematic representation of 
SEDA.  

 

Fig. 7. Block diagram of SEDA. 

C. Example 

Analogously to the PCA, we present SEDA more precisely 
in this section by means of an example and through the analysis 
of the results. For this purpose, the same database as in the PCA 
(see section II.C) is used. 

The database is analysed using the PCA. From this analysis 
68 PCs were obtained. The frequency distributions of the 
individual PCs were determined. For test purposes, two different 
numbers of bins (#Bins = 200 and #Bins = 300) were 
investigated. This resulted in 136 (2 x 68) different plots of the 
frequency distributions for 68 PCs. The distribution of the red or 



green objects was displayed simultaneously for each plot. The 
frequency distributions for different #Bins are shown in Fig. 8 
and Fig. 9. In these plots, the y-axis describes the frequencies, 
while the x-axis represents the bin number. A first visual view 
of the overlapping of the object points shows that the first PC 
(PC1) has the best separation potential between early and late 
failures. PC1 shows throughout the best separation of the object 
points in the different plots, so #Bins does not matter much in 
terms of separation potential. 

 

Fig. 8. Histograms of the frequency distributions for #Bins = 200. 

 

Fig. 9. Histograms of the frequency distributions for #Bins = 300. 

By determining the number of separate red and green data 
sets (#red-separated and #green-separated) for each PC, as 
explained in section III.C, one can compute mathematically 
which PC actually provides the best separation result. Here e.g. 
#Bins was set to 300 and Fig. 10 resulted. 

 

Fig. 10. Number of red- and green-separate objects for all PCs, #Bins = 300. 

Here, too, it becomes clear that PC1 has a distinctly higher 
separation number compared to the remaining PCs, which show 
an approximately similar separation potential from the fifth PC. 
Compared to the result of the PCA to the same database in 
Section II.C, the result recorded here is explainable, since the 
first four PCs in Table 1 had the largest eigenvalues and covered 
75% of the variance. In view of the representation of the 
eigenvalues over the PC number in Fig. 10, the similarity with 
which the first four PC are responsible for a large portion of the 
data can be seen, whereas the remaining ones are rather standing 
for noise and thus do not cause a great loss of information in case 
of disregard. 

After determining the PC, which is responsible for the best 
separation, the associated data of the separated objects are now 
removed from the database. The iterative process of SEDA takes 
place until all objects are completely separated. After each step, 
the frequency distributions are shown in Fig. 11 to Fig. 13. In 
this database used for SEDA, three iteration steps are sufficient 
to completely separate green and red objects as shown in Fig. 
13. For each iterative procedure, PC1 was outputted for the best 
separation since the first PC is responsible for the largest portion 
of the variance in the PCA (see section IIII.B) and this variance 
is the information for the separation in this case. 

 

Fig. 11. First iteration: Frequency distribution for PC1, #Bins = 300, 450 red 

objects and 450 green objects. 



 

Fig. 12. Second iteration: Frequency distribution for PC1, #Bins = 300, 266 red 

objects and 141 green objects. 

 

Fig. 13. Third iteration: Frequency distribution for PC1, #Bins = 300, 52 red 

objects and one green object. 

After a complete data collection by SEDA has been reached, 
the cause of early failure can now be explicitly examined 
analogously to Fig. 4. This is done by reducing the database to 
the separate data after each iteration and thus performing a 
reliable error diagnosis without any loss of information 
(complete database). 

IV. SUMMARY AND OUTLOOK 

The purpose of this paper is to present two test methods for 
the separation and classification of high-dimensional test data 
and thus reduction of data dimensions. The PCA and SEDA are 
multi-dimensional analysis methods and have the goal of 
classifying individual dimensions of the data sets according to 
their relevance, or according to the variance of the set in this 
dimension. 

The PCA is an orthogonal transformation in the m-
dimensional space of the original variables into a new set of 
variables, the PCs. At the beginning, the correlation matrix is 
calculated from the data set of variables. Subsequently, the 
eigenvalues and eigenvectors of the correlation matrix are 
determined followed by the determination of the number of the 
eigenvalues, which cover the percentage of the variances to the 
greatest extent. This number indicates the effective dimension of 
the data and determines the necessary PCs to be considered. 

These PCs are then analyzed more precisely in order to further 
reduce the data volume and to interpret the test result. It is 
advantageous if the data points initially have a correlation, hence 
are linearly related to each other and therefore containing 
decisive information for a separation. However, there is no 
complete data separation and the number of PC selected is not 
explicit and depends on the choice of the user [7]. 

SEDA as a self-designed, multi-dimensional analysis 
method serving as the PCA as data separation. With SEDA, 
PCA's partially incomplete data separation should be optimized 
and yet the advantages of the PCA still be exploited. Using the 
SEDA, a database is transformed orthogonally into a set of 
uncorrelated variables using the first PCA step. According to the 
principle of an analog-to-digital converter, the frequency 
distributions of the individual PCs detected are determined in the 
form of histograms. Based on the frequency distributions, the PC 
with the best separation potential can be determined and used to 
reduce the database. For this purpose, the entire separated 
objects are traced, selected from the original database and 
removed therefrom. Iterative steps therefore allow complete data 
separation, depending on the resolution. The complete 
separation of the data and the independence from a data 
distribution make SEDA a robust and effective method 
compared to the PCA. 

SEDA, in comparison to PCA, allows a non-linear, complete 

separation of non-linear separable objects according to specific 

criteria. However, it would be important to determine the 

nonlinear multi-dimensional polynomial in the next step. In 

addition, it would be useful to find out how the number of bins 

are related to the number of iterations, and whether other 

variables, such as database dimension or complexity, play a role 

in iterating or, more generally, complete data reduction. In 

addition, it would be interesting and important to compare 

SEDA with other procedures for feature selection and general 

machine learning in the test field [8] 

 

REFERENCES 

 
[1] L. Zhao, Z. Chen, Y.Hu, G. Min, Z. Jiang, “Distributed Feature Selection 

for Efficient Economic Big Data Analysis”, IEEE Transactions on Big 
Data. (2017) 

[2] X. Bian, H. Krim, A. Bronstein, L. Dai, “Sparse null space basis pursuit 
and analysis dictionary learning for high-dimensional data analysis”, 
IEEE (ICASSP), pp. 3781 - 3785. (2015) 

[3] T. Zhang, B. Yang, “Big Data Dimension Reduction Using PCA”, IEEE 
International Conference on Smart Cloud, pp. 152 -157. (2016) 

[4] Y. Xie, T. Zhang, “A fault diagnosis approach using SVM with data 
dimension reduction by PCA and LDA method”, Chinese Automation 
Congress (CAC), pp. 869 - 874. (2015) 

[5] Z. Alf: “Hauptkomponentenanalyse - Principal Component Analysis”, 
version B, FIM- psychology, Erlangen (Germany). (1983) 

[6] University Magdeburg (Germany), “Hauptkomponentenanalyse - 
Principal Component Analysis (PCA)”, p. 23. (2009) 

[7] D. Brauckhoff, K. Salamatian, M. May, “Applying PCA for Traffic 
Anomaly Detection: Problems and Solutions”, IEEE INFOCOM, pp. 
2866 – 2870. (2009) 

[8] H. Ayari, F. Azais, S. Bernard, M. Comte, M. Renovell, V. Kerzerho, O. 
Potin, C. Kelma, “Smart selection of indirect parameters for DC-based 
alternate RF IC testing”, IEEE 30th VLSI Test Symposium (VTS). (2012) 

 


