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Abstract—The aim of this paper is to summarize the dynamic
effects of asynchronous circuits again and to verify them using
logical models and real basic examples. The effects of hazards
and races are presented theoretically and formally, and a new
formula for recognizing races is derived from this. Examples of
how these formulas can be applied are then shown. The effects
are made visible with the help of a specially developed circuit
board and an oscilloscope.

I. INTRODUCTION

THe automotive industry is an industry with very high
requirements on safety and security, and, especially in

the area of e-cars, with high demands on power-saving systems
due to the increasing use of electrical systems for propulsion
and electronic systems for control. These systems could be
characterized as modular, distributed and discrete event sys-
tems. From 2019-2024, the automotive market is forecast to
grow at 9.7%, the strongest CAGR (compound annual growth
rate) of any end-use segment. [1]
Synchronous circuits are said to have a single point of failure
and high power consumption due to their clock line. [4] For
safety-critical circuits, autonomously operating subsystems
that do not require a clock line could be developed, enabling
the design of functionally safe and further energy-saving
circuits and systems.
Asynchronous sensor signals in the vehicle could then be
processed by such autonomous subsystems on an event-driven
basis only when a signal occurs without a global clock that
is always clocked. Asynchronous circuits are therefore of key
importance. To understand the challenge of these designs, it is
thus important to know the dynamic effects of asynchronous
circuits and to avoid them by appropriate implementations and
models.
If a function is not designed according to its structure, it is
possible that the circuit will exhibit unpredictable behavior.
Thus, errors such as hazards or races can occur in asyn-
chronous circuits. For a better understanding, these errors are
first theoretically reviewed, analyzed with example circuits and
then implemented with suitable basic circuits for illustration
by structure and analysis.

II. HAZARDS

Hazards describe the possibility that a momentary fault may
affect an electronic circuit. If a hazard actually appears at
the output of a circuit, it is referred to as a hazardfehler. In
principle, hazards are differentiated in their origin in function

(time) and structure (space) and in their effect in static and
dynamic. The descriptions of the derivation operations are
taken from [5] and [6].

A. Function Hazards

Function hazards are potential faults at the output of a
circuit when at least two input quantities do not change
simultaneously and an intermediate fault signal is generated
by this malfunction.

1) Static Function Hazards: Static function hazards main-
tain their value f(x) at the end while they briefly generate
intermediate false signals, see Fig. 1a.

(a) Static 1-Hazard (b) Dynamic 1-0 Hazard

Fig. 1: Function Hazards

To derive a static function hazard, it must be ensured that
both input assignments produce the same output, i.e. that its
vectorial derivative according to Eq. (1) equals 0.

df(x)
dxp

∣∣∣∣
Xp

= f(Xp,xq)� f(Xp � 1,xq) with x = (xp,xq) (1)

The condition now is that there are input variations due to
non-simultaneous switching that result in a different output
signal, i.e., its varational derivative equals 1 according to Eq.
(2).

∆f(x)
∆xp
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f(Xp,xq)� f(Xp � c,xq)

with xp = (x1,x0) and c ∈ {01,10,11}
(2)

2) Dynamic Function Hazards: Dynamic function hazards
are potential false signals that can occur during a transition of
an output signal if at least three input signals change their
values, see Fig. 1b. To derive a dynamic function hazard,
it must be ensured that both input assignments produce a
different output, i.e. that its vectorial derivative according to
Eq. (3) equals 1.

df(x)
dxp

∣∣∣∣
Xp

= 1 with x = (xp,xq) (3)



The requirement now is that there are input variations due to
non-simultaneous switching from x1 to x4 that lead to different
output signals, so that f(x1) = f(x2) = f(x3) = f(x4). Since
a dynamic functional hazard combines two static functional
hazards, it can also be calculated by a formula that is not
presented in this paper.

B. Structure Hazards

Structure hazards, as the name implies, describe the pos-
sibility of a short-time false signal due to differences in the
time delay in a circuit, i.e. due to different delays between
real paths of a circuit. To find a static structure hazard, it must
be ensured that there is no function hazard whose varational
derivative equals 0 according to Eq. (4).

∆f(x)
∆xp

= 0 (4)

Next, each individual path must be encoded as a variable in
a to set up the overall time model f(a), which encodes each
input path as a dimension (totzeitmodell). The condition now
is that there are input variations when switching the vector,
i.e. that its varation derivative according to Eq. (5) equals 1.

∆f(a)
∆ap

= 1 with a = (ap,aq) (5)

III. RACES

When at least two feedbacks compete with the output value
of their states, so-called races are created. [6] These underlying
structures, inverted with respect to each other, produce differ-
ent solutions with respect to the physical conditions applied to
the circuit. There are two types of races. In one race, the final
state of the scenario is certain, but the respective transitions
are different. This is called a non-critical race. The second race
is called a fatal race situation. In this case, there is additional
unpredictable behavior in the final state, i.e. different defined
solutions are undoubtedly possible.
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Fig. 2: Sequential Circuit

In the following, we will look at a sequential circuit in Fig. 2
with two state variables q1 and q0 inverted with respect to
each other. A potential race can be found if it meets two
conditions. First, one must determine whether at least two
signals can change simultaneously. To do this, the individual
transitions of the state variables of a sequential circuit must be
superimposed. Eq. (6), e.q., shows all transitions (reflections)
of δQ1 from 0 to 1 and δQ1

from 1 to 0 (see also the
expressions in Eq.(17)).

(δ̃Q1 , δ̃ Q1
) = (Q1∧δQ1 ,Q1∧δ Q1

) (6)

The superposition of the reflections of two inverted coupled
state variables then leads to the double transitions in (7).

δ̃Q1Q0 = Q1Q0∧ (δQ1 ,δQ0)

δ̃ Q1Q0
= Q1Q0∧ (δ Q1

,δ Q0
)

(7)

Second, the transitions of one state variable affect the output
of the other state variable. Therefore, the partial derivative of
the transition of one state variable over the other state variable
must be determined in (8).

∂δQ1

∂q0
= δQ1(Q0)� δQ1(Q0)

∂δQ0

∂q1
= δQ0(Q1)� δQ0(Q1)

(8)

The boundary conditions of possible races are then given by
(9). These are two infima of the double transitions (reflections)
of the two state variables and their mutually non-exclusive
transitions.

δQ1(Race) = (δ̃Q1Q0 , δ̃ Q1Q0
)∧

∂δQ1

∂q0

δQ0(Race) = (δ̃Q1Q0 , δ̃ Q1Q0
)∧

∂δQ0

∂q1

(9)

IV. EXAMPLES

Given is the following circuit, see Fig. 3a, with its logical
function f (z,x) = zx1x0 ∨ x1, and its KV diagram (multi-set)
in Fig. 3b. These representations are used to demonstrate the
calculation of function and structue hazards.
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(b) KV Diagram

Fig. 3: Example Logical Circuit

A. Function Hazard

The structure has a static function hazard when switching
from input [101] to [110] in (10) (and vice versa).

df(z,x)
dxp
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Xp

= f(z,Xp)� f(z,Xp) with xp = (x1,x0) (10)

Therefore, we should calculate in Eq. (11) that the two output
values are not different from each other.

df(z,x)
dxp

∣∣∣∣
101

= 1 � 1 = 0 (11)



Finally, by the varational derivation in Eq. (12), we must prove
that there are assignments in Eq. (13) that lead to output
variations instead.

∆f(z,x)
∆xp
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=
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f(z,Xp)� f(z,Xp � c)

with c ∈ {01,10,11}
(12)

∆f(z,x)
∆xp

∣∣∣∣
101

= 1 � 0∨1 � 1∨1 � 1 = 1 (13)

Since the results in Eq. (13) are true, a static function hazard
can be proved.

B. Structure Hazard

The next goal is to find all the structure hazards of the
circuit in Fig. 3a. We recall that there may not be any timing
difference when applying digital signals to the input pins.
Since the blocks of the circuit do not overlap, a structure
hazard should still be detected. By switching from input [111]
to [101] for a short time, so to speak, (x1,x̄1) = [00] holds.
This happens because of the faster switching of x1 over x1 in
the circuit.

df(z,x)
dxp

∣∣∣∣
111

= f(z, [11])� f(z, [01]) = 1 � 1 = 0 (14)

Since the vectorial derivative in Eq. (14) is equal to 0, no
function hazard is proved.

∆f(a)
∆ap

=
∨
c

f(Ap,aq)� f(Ap � c,aq)

with ap = (a2,a0) and c ∈ {01,10,11}
(15)

But due to the varational derivative after the extension of the
function f(a) in Eq. (15), a static structure hazard is proved
with (16).

∆f(a)
∆ap

∣∣∣∣
1011

= 1 � 0∨1 � 1∨1 � 1 = 1 (16)

The totzeitmodell f(a) maps the input vector (z,x1,x1,x0) to
(a3,a2,a1,a0) where now f(a) = a3a1a0∨a2 with a2∼ a1. This
proves that there is a static structure hazard due to x1 or not.
However, only the real physical boundary conditions will show
whether this is a hazardfehler.

C. Race

Using the low active RS-latch in Fig. 2, it is shown how
race conditions can be determined. It is explained in more
detail how a race is detected and how the table of values
of the logical and real circuits can be determined to obtain
the structure-preserving model. Therefore, the equations of the
positive and negative rails (function, literal) of each state q1
and q0 are formulated in Eq. (17-18),

(δQ1 ,δ Q1
) = (S∨Q0,S∧Q0) (17)

(δQ0 ,δ Q0
) = (R∨Q1,R∧Q1) (18)

and the to-1-transitions and to-0-transitions in Eq. (19-20) are
determined.

(δ̃Q1 , δ̃Q0) = (Q1∧δQ1 ,Q0∧δQ0) (19)

(δ̃ Q1
, δ̃ Q0

) = (Q1∧δ Q1
,Q0∧δ Q0

) (20)

From these reflections (transition), the expressions for the
double transitions in Eq. (21-22) can be derived. They describe
input assignments, where both state variables q1 and q0 switch
simultaneously.

δ̃Q1Q0 = Q1Q0∧ (δQ1 ,δQ0) = Q1Q0 (21)

δ̃ Q1Q0
= Q1Q0∧ (δ Q1

,δ Q0
) = Q1Q0SR (22)

In the last step, the dependencies from output variables (actual
states) on input variables (preceeding states) is checked in Eq.
(23-24),

dδQ1

dq0
= δQ1(Q0)� δQ1(Q0) = S∧1 = S (23)

dδQ0

dq1
= δQ0(Q1)� δQ0(Q1) = R∧1 = R (24)

and finally combined to the race conditions in Eq. (25-26).

δQ1(Race) = (δ̃Q1Q0 , δ̃ Q1Q0
)∧

∂δQ1

∂q0
= (Q1Q0S,Q1Q0SR)

(25)

δQ0(Race) = (δ̃Q1Q0 , δ̃ Q1Q0
)∧

∂δQ0

∂q1
= (Q1Q0R,Q1Q0SR)

(26)

In addition, Fig. 4 shows the NAND2 gate of the output
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Q0

S
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Fig. 4: NAND2 of q1

variable (state variable) q1. It is easy to see that for S = 1
the upper NMOS in the pull-down is conducting (on) and
therefore the output (pin) Q1 depends only on the input at Q0.
These boundary conditions are formulated and computable by
the partial derivative in Eq. (23). The race condition is the
reduction to just this boundary condition, of course only for
double reflections (transitions). Using the results of Eqs. (25-
26), the partial value table for the real low-active RS latch
can be constructed in Table I. I. All race conditions for which
the trailing initial value is not predictable are marked with ∗.
In reality, however, the output values depend deterministically
on physical boundary conditions that can be preset. However,
they are not represented in the logical model.



TABLE I: Truth Table of RS Latch (logic and real)

logic digital
Q1 Q0 S R Q1 Q0 Q1 Q0

0 0 0 0 1 1 ∗ ∗
0 0 0 1 1 1 ∗ 1
0 0 1 0 1 1 1 ∗
0 0 1 1 1 1 1 1
0 1 0 0 0 1 0 1
0 1 0 1 0 1 0 1
0 1 1 0 1 1 1 1
0 1 1 1 1 1 1 1
1 0 0 0 1 0 1 0
1 0 0 1 1 1 1 1
1 0 1 0 1 0 1 0
1 0 1 1 1 1 1 1
1 1 0 0 0 0 ∗ ∗
1 1 0 1 0 1 0 1
1 1 1 0 1 0 1 0
1 1 1 1 1 1 1 1

V. IMPLEMENTATION

In this section, the fundamentals presented so far are demon-
strated (verified) using a real PCB (Printed Circuit Board).
A microcontroller is used for the simultaneous switching of
the input signals. For this purpose, it reads the signal values
(assignments) from its registers by means of a clock signal.
We notice that this simultaneous reading of input signals can
nevertheless lead to errors.
The circuit board, specially designed for dynamic effects, is
shown in Fig. 5. The circuit board consists of input switches,
NAND gates, RC gates, inverters, and RS buffers. The RC
gates can be used to simulate parasitic effects, the NAND gates
are used to build DNF functions in NAND structure and the
RS buffer can be used for asynchronous design in Dual-Rail,
this was already described in [2].

Fig. 5: PCB of the Trainingboard

A. Static Function Hazard

To realize a static function hazard, the structure of Fig. 3a
was implemented with NANDs. The expression for the circuit-

under-measurement (CUM) is given in equation (27).

y = f(x) = x1∨ zx1x0 = x1∧ zx1x0 (27)

According to Section IV-A, the function hazard from [101] to
[110] is considered. When x0 switches first at the transition of
input assignments, a function hazardfehler is now detected by
the measurement in Fig. 6. The y-axis is in units of 2V and
the x-axis is in units of [ns] per square. The trigger point for
the transition is also given. It is easy to see that the output
value holds its value constant before and after the transition
under consideration, while the output value deviates briefly
but significantly from this value.

Fig. 6: Oscilloscope Image of a Static Function Hazard

It can be seen that the output value changes for a short time,
but at the end the correct output signal of the assignment
[110] is present. This is because the transistion into to the
end assignment does not depend on the state. To get a better
understanding of this, the dependencies of a state transfer
function δ on its own state variable z are considered, see Fig.
7 from [3]. Comparing Z to Z in Fig. 7, it can be seen whether
the state transfer function δ depends on the state variable z. For
example, considering the single solid region, the state transfer
function δ has the same value as the variable z decomposed
into (Z,Z). This is the state stable part. If the loosely dotted
area is considered, it can be seen that the function does not
depend on z, since independent on the value of z a logical 1
is always seen at the output.

δ X0

X1

Z
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Fig. 7: Parts of a State Transfer Function

B. Static Structure Hazard

To verify the static structure hazard from section IV-B, only
the input variable x1 is switched from 1 to 0. The delay of



the signal is caused by the real delay of the inverter (low
pass behavior 1st order). This generates the negative literal
x1, which is then present minimally later. This can be seen
well in the screenshot of the oscilloscope in Fig. 8. However,

Fig. 8: Oscilloscope Image of a Structure Hazard

the delay of the inverter is smaller than the static functional
disturbance of the previous example. Thus the disturbance has
less influence on the output and the hazardfehler does not fall
below 50 percent.

C. Races

The last part of this section is about the fatal race. Therefore,
the low active RS latch from Fig. 2 is wired on the PCB, which
is shown in Fig. 9. Unused inputs of the NAND4 gate are set
to VDD in this case, since logic 1 is the neutral element of
the NAND.

Fig. 9: Low Active RS Latch (cut out area)

In the state transition shown in the oscilloscope in Fig. 10,
with input assignment (s,r) = [00], both output states Q1 and
Q0 are first clamped to logic 1. Then (s,r) = [11] is switched.
Both NAND gates try to pull their respective output state to
the value 0. But since the two gates cannot switch at the same
time (they are inverted to each other) the stronger and thus
the faster gate pulls its output state to 0 and thus influences
the input of the other gate essentially. The change of the other
gate cannot be completed, but is overruled, and switches back
(or does not switch).

Fig. 10: Oscilloscope Image of a Race

VI. CONCLUSION AND FUTURE WORK

At the beginning, the theoretical basics of dynamic effects
of asynchronous circuits from the literature were elaborated
again in a summarized way. Special attention was paid to the
race condition (boundary conditions for races of edges) and its
formal description. These findings could then be reproduced
using real basic circuits. This is very important for learning
such effects, and can be experienced in an exemplary way.
With the formulas provided, future more complex designs can
be formally analyzed and designed to be hazard error free and
race error free, which has already been shown in [2]. These
designs could then be verified on the presented board, as the
implemented functions only need to replace the NAND4 gates.
This would allow safety critical asynchronous designs to be
compared. Certainly, announced new CAD tools for realizing
more extensive designs can be validated. However, one of our
stated goals would be to use FPGAs for low-cost prototyping
and realization of safe designs.
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