
Asynchronous Design
Florian Deeg, Jie Zhu, Sebastian M. Sattler

Chair of Reliable Circuits and Systems
Friedrich-Alexander-Universität Erlangen-Nürnberg

Paul-Gordan-Str. 5, 91052 Erlangen, Germany
Email: {florian.deeg,jie.zhu,sebastian.sattler}@fau.de

Abstract—The paper discusses the challenges and solutions to

asynchronous design and suggests a secured design by stabilizing

all states with RS-Buffer in Dual-Rail.

I. MOTIVATION

ALTHOUGH synchronized circuits are state-of-the-art, the
consideration of asynchronous circuits with various ad-

vantages (lower power consumption, better system perfor-
mance, no clock skew problems) has become increasingly
important in recent years. [1] An essential feature of asyn-
chronous circuits in contrast to synchronized circuits is that
they are controlled without a global clock edge, which is why
errors, such as hazards, glitches and races, can occur.

II. HAZARDS

HAZARDS describe the possibility that a short-term fault
may affect an electronic circuit. If a hazard actually

appears at the output of a circuit, it is called a hazardfehler.
Hazards are distinguished in principle in their origin in func-
tional and structural hazards and in their effect in static or
dynamic hazards. [2]

A. Functional Hazards

Functional hazards are potential errors at the output of a
circuit, if at least two variables do not change at the same
time and an intermediate error signal occurs (due to the
function, hence the name). Function hazards are caused by
wrong switching of at least two input signals.

1) Static Functional Hazards: Static functional hazards
retain their value at the end and may briefly produce false
signals, see Fig. 1.

Fig. 1: Static 1-Hazard

2) Dynamic Functional Hazards: Dynamic functional haz-
ards are potential false signals that can occur during a transi-
tion of an output signal if at least three input signals change,
see Fig. 2. Every dynamic functional hazard also contains a
static functional hazard, so one must distinguish between static
and dynamic. There may be a static functional hazard error that
is not contained in any dynamic functional hazard error.

Fig. 2: Dynamic Functional Hazard

3) Prevention of Functional Hazards: Functional hazards
can now be avoided by one-step changing an input signal.
This is illustrated by the partial automaton in Fig. 3. Its

10 11

00 01

10

00

11 11

10

01

00

01

10

01

11

00

Fig. 3: One-Step Encoded Automaton (Graph)

representation as a phase list (table of values) is given in Tab.
I, its representation as a multiset (KV diagram) in Fig. 4. From

i z1 z0 x1 x0 z1 z0
0 0 0 0 0 0 0
1 0 0 0 1 0 1
2 0 0 1 0 1 0
3 0 0 1 1 ⇤ ⇤
4 0 1 0 0 0 0
5 0 1 0 1 0 1
6 0 1 1 0 ⇤ ⇤
7 0 1 1 1 1 1
8 1 0 0 0 0 0
9 1 0 0 1 ⇤ ⇤
A 1 0 1 0 1 0
B 1 0 1 1 1 1
C 1 1 0 0 ⇤ ⇤
D 1 1 0 1 0 1
E 1 1 1 0 1 0
F 1 1 1 1 1 1

TABLE I: Phase List of the Automaton

this, for example, the unary z-variables z1 = Z1
1 and z0 = Z1

0



can be resolved from the logic state functions dz = (dz1 ,dz0)
of Equ. (1)-(2):

dz1(z,x) = z1x1 _ z̄0x1x̄0 _ z0x1x0 (1)
dz0(z,x) = z0x0 _ z1x1z0 _ z̄1x̄1x0 (2)

Following a two-level implementation of gates functional
hazards aren’t excited anymore. During transitions any signals
only change in one variable at a time. Asterics (⇤) are
forbidden assignments [3] and implemented by Don’t Cares
in Fig. 5.

dz1 X0

X1

Z0

Z1

0 0 ⇤ 1

0 0 1 ⇤

⇤ 0 1 1

0 ⇤ 1 1

0 1 23

4 5 67

8 9 1011

12 13 1415

dz0 X0

X1

Z0

Z1

0 1 ⇤ 0

0 1 1 ⇤

⇤ 1 1 0

0 ⇤ 1 0

0 1 23

4 5 67

8 9 1011

12 13 1415

Fig. 4: KV-Diagram of dz1 and dz0

&

&

&

&

&

&

� 1

� 1

x1 x0 z1 z0

Fig. 5: Digital Circuit of the Automaton

Functional hazards can also be avoided by synchronizing the
input signals through e.g. D-Flipflops as shown in Fig. 6. Thus
input signals are always applied to the circuit simultaneously
with the change of clock (here the positive change from 0 to
1). The change of a state is thus effected by all input signals

simultaneously in parallel, i.e. synchronized with the positive
edge of the clock.

D

Q

Q

D

Q

Q

nx0

nx1

CLK

ax0

ax1

Fig. 6: Synchronization of Inputs (x1,x0)

B. Structural Hazards

Structural hazards describe, as the name implies, the
possibility of a short-term false signal due to differences
in time delay in a circuit, i.e. due to different delays
between paths of a circuitry. As an example, a structure
which implements the z-variable (function z) from Fig. 7 is
presented in Fig. 8. Since the respective parts of the circuit
are not overlapped designed, a structural hazard can be
created by switching from input 7 = [111] to input 5 = [101],
if x1 = [0] and x̄1 = [0] are present for a short time. This can
happen due to the faster switching of x1 over x̄1 .

z X0

X1

Z

0 0 1 1

0 1 1 1

0 1 23

4 5 67

Fig. 7: Example KV-Diagram

&
� 1

x0
x1

x1
z

Fig. 8: Structural Hazardous Implementation

1) Prevention of Structural Hazards: The avoidance of such
hazards is done by overlapping the prime blocks. With the
help of additional circuitry (additional paths) a hazard-free
implementation of equal but different signals, i.e. 1’s or 0’s,
is achieved. They must be "counted" overlapping as shown in
Fig. 9, their implementation is given in Fig. 10.
Structural hazards also show no effect at the output when
designing in Dual-Rail with the RS-Buffer. This design method
is explained in more detail in the following chapter. However,
one should first concentrate on the overlapping prime blocks
to avoid structural hazards and thus obtain a safe circuit.



III. GLITCHES

Glitches describe short term false signals, which can occur
e.g. by irradiation of charged particles into paths of electrical
circuits. [4] We assume here hazard-similar short-term false
signals to discuss the avoidance of such glitches.

z X0

X1

Z

0 0 1 1

0 1 1 1

0 1 23

4 5 67

Fig. 9: Overlapping 1-Function Blocks

&
� 1

x0

x1
z

Fig. 10: Structural Hazard-Free Implementation

1) Prevention of Glitches: The RS-Buffer (RSB) and the
Dual-Rail Logic (DRL) make it possible to realize a SEU-
hard circuit. For a better understanding, the RSB as well as the
design in DRL are briefly discussed. [5] An RS-Buffer consists
of a tri-state driver and a so-called babysitter. As shown in
Fig. 11, the tri-state data path is the first stage of the RSB.
It consists of two PMOS and NMOS transistors arranged in
series. The signals R and S are each connected to a PMOS
and a NMOS pin. The structure exhibits the property that the
transistors arranged in series are only switched on at R = S.
Otherwise the tri-state is in a high-impedance state. In the
case of the unexpected invalid input combinations RS = [01]
or RS = [10], the babysitter’s task is to keep the current state
awake until a new valid input combination is switched through
via the tri-state. The second stage of the RSB, that is the
control path - the so-called babysitter, consists of a two-
stage, fed back inverter chain, in which the feedback inverter
is realized with a long-channel transistor. A lower driver
capability is implemented, that it can always be overruled by
a signal driven by the tri-state. The truth table for the output
B of the RSB is given in Tab. II, its formal description is
B = RS_RB_SB.

S R B Comment
0 0 B Hold
0 1 0 Reset
1 0 1 Set
1 1 B Hold

TABLE II: Truth Table of the RS-Buffer

For the purpose of a consistent and structural analysis of
asynchronous circuits, the symbol of the RS-Buffer (RSB) has
been chosen as shown in Fig. 12. With the help of the RSB, a

VDD

VDD

M

L

L

M

VDD

S

R

B

Fig. 11: Schematic of the RS-Buffer

+ B

S

R

Fig. 12: Circuit Symbol of the RS-Buffer

state can now be maintained for unexpected input assignments.
It is therefore possible to intercept unexpected signals, i.e. to
muffle them. For the successful use of an RSB in asynchronous
circuitry, however, it is mandatory to feed them by a Dual-Rail
Logic (DLR). In this logic, the ones (1-signals) are propagated
along the positive rail, the zeros (0-signals) are propagated
along the negative rail. BUT, at gate level (block diagram level)
the ones are understood as a set and the zeros are understood
as a reset. Thus, in propositional logic in Dual-Rail with RS-
Buffer

- the 1’s of a logical function are coded as 1’s,
- the 0’s of a logical function are coded as 1’s.

The example of Fig. 3 is now provided in Fig. 13 in DRL
with RSB. With 1’s and 0’s of both rails being coded as 1’s in
propositional logic, binary functions are given in Equ. (3)-(6).

dz1 = z1x1 _ z1z̄0x0 _ z0x1x0 _ z̄0x1x̄0 (3)
d̄z1 = z̄1x̄1 _ z0x̄1 _ z̄1z̄0x0 _ z1x̄1x̄0 _ z̄1z0x̄0 (4)
dz0 = z0x0 _ z̄1x̄1x0 _ z̄1z0x1 _ z1x1x0 (5)
d̄z0 = x̄1x̄0 _ z1x̄0 _ z1z̄0x̄1 _ z̄1z̄0x1 (6)

IV. RACES

Races in a circuitry are races on a feedback line (between
their signals on a single line or more than a single line)
and thus dependencies on the change of a state, i.e. on state
variables.



A. RS-Latch as an Example for Races
To take a closer look at races, an example structure is first

considered, see Fig. 14.

d̄z̄0

dz0

d̄z̄1

dz1

+

+

x0
x1

x0
x1

x0
x1

x0
x1

z0

z1

Fig. 13: Glitch-Free Dual-Rail Logic

&

M1

&

M2

R

S

Q0(= Q)

Q1(= Q)

Fig. 14: Low-Active RS-Latch

A race can be triggered when SR switches from [00] to [11]
as in Fig. 15.

&

M1

&

M2

R

S

Q0(= Q)

Q1(= Q)

Q1Q0 VTH

Fig. 15: Example of a Race

In this example, the output Q0 wins, because it first switches
to Low and thus turns the other output to High. This state
then stabilizes itself. It could also come to the assignment
(Q1,Q0) = [01], but never to the oscillation. Since the subse-
quent state of the race constellation cannot be predicted, this
assignment is numbered [⇤ ⇤].
B. Characteristics of Races

Races describe undetermined signal superpositions of at
least two signals on at least one feedback line. The destructive
signal superpositions are caused by the change of at least two
state variables. If the output depends on the propagation of
both signals, it is called a race.

C. Prevention of Races

To avoid races, asynchronous automata are designed one-
step incremental [6]. Thus, only one state variable may change
at a time during a state transition. The example from chapter
II shows an automaton, that is completely encoded one-step.

V. EXAMPLE OF AN ASYNCHRONOUS AUTOMATON

A functional hazard-free automaton for at-speed direction
recognition is considered, see Fig. 16. Only a single input
can change at each transition. This is called correct-by-
construction.

d
(r,z1,z0)

x1
x0

Fig. 16: Direction Recognition at a Rotating Object

In order to obtain the race-free implementation of the circuit
in Fig. 17, the machine is one-step encoded in its states. It
means that only one state variable changes during the time of
a transition. To realize a glitch-free circuit, the unused edges,

010 110

000 100

001 101

011 111

00
01

01

10

00

01
00

11

00

10

01

11
01

10

01

00

11

10
11

11

01

10

1100

Fig. 17: One-Step Encoded Machine

which cannot occur, will be encoded as "hold", meaning the
machine will maintain the last state. Using the KV-diagrams



r X0 X0

X1 R

Z0

Z1

1 1 0 1

1 0 1 1

0 1 1 1

1 1 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 23

4 5 67

8 9 1011

12 13 1415

161718 19

202122 23

242526 27

282930 31

Fig. 18: KV-Diagram of r = (R,R)

z1 X0 X0

X1 R

Z0

Z1

1 0 0 0

0 0 0 0

1 1 0 1

1 1 1 1

0 0 0 0

0 0 0 1

1 1 1 1

1 0 1 1

0 1 23

4 5 67

8 9 1011

12 13 1415

161718 19

202122 23

242526 27

282930 31

Fig. 19: KV-Diagram of z1 = (Z1,Z1)

z0 X0 X0

X1 R

Z0

Z1

0 0 0 0

1 1 1 0

1 1 1 1

0 1 0 0

0 0 1 0

1 1 1 1

0 1 1 1

0 0 0 0

0 1 23

4 5 67

8 9 1011

12 13 1415

161718 19

202122 23

242526 27

282930 31

Fig. 20: KV-Diagram of z0 = (Z0,Z0)

of the unary variables R, R, Z1, Z1, Z0 and Z0, see Fig. 18 to
20, the state transfer functions can be set up in Eq. (7)-(12).

r = rz1x0 _ rz0x̄1 _ rz̄1x̄0 _ rz̄0x1 _ z̄1z0x̄1x0 _ z1z0x1x0

_ z1z̄0x1x̄0 _ z̄1z̄0x̄1x̄0 (7)
r̄ = r̄z1x̄1 _ r̄z̄1x1 _ r̄z̄0x0 _ r̄z0x̄0 _ z1z0x1x̄0 _ z̄1z0x1x0

_ z1z̄0x̄1x̄0 _ z̄1z̄0x̄1x0 (8)
z1 = z1x1 _ z1x̄0 _ r̄z1z0 _ rz1z̄0 _ r̄z0x1x̄0 _ rz̄0x1x̄0 (9)
z̄1 = z̄1x̄1 _ z̄1x0 _ rz̄1z0 _ r̄z̄1z̄0 _ rz0x̄1x0 _ r̄z̄0x̄1x0 (10)
z0 = z0x1 _ z0x0 _ rz1z0 _ r̄z̄1z0 _ rz1x1x0 _ r̄z̄1x1x0 (11)
z̄0 = z̄0x̄1 _ z̄0x̄0 _ rz̄1z̄0 _ r̄z1z̄0 _ rz̄1x̄1x̄0 _ r̄z1x̄1x̄0 (12)

The resulting dual-rail implementation of the machine is
given in Fig. 21.

VI. CONCLUSION AND FUTURE WORK

In order to obtain delay-insensitive circuits, the one-step
encoding of both the input and output is important. If and only
if one input or state variable changes at a time, time difference
of signals no longer plays a role. In order to make the
paths through a circuit additionally hardened against structural
hazard errors, prime blocks (for maxterms and minterms) must
be selected overlapping, so that differences in path propagation
time disappear. In the future, high-performance algorithms will
be required for the one-step encoding of (state) variables as
well as for high fan-in cascaded circuitry in order to avoid any
kind of structural hazards. This will create new possibilities
to emulate, design and protect programs, circuits and systems
against delay.

z̄0

z0

z̄1

z1

r̄

r

+

+

+ r

z1

z0

x1x0

Fig. 21: Glitch-Free Dual-Rail Implementation

REFERENCES

[1] Carroll, C.: Asynchronous finite state machine design: A
lost art? ASEE, 2006.

[2] Zander H.: Logischer Entwurf binärer Systeme. VEB
Verlag Technik Berlin, 1989.

[3] Wuttke H.-D.; Henke K.: Schaltsysteme, Eine auto-
matenorientierte Einführung. Pearson München, 2003.

[4] Karnik, T:, Hazucha, P.:, Patel, J.: Characterization of
Soft Errors Caused by Single Event Upsets in CMOS
Processes. IEEE Trans. on Depend. and Sec. Comp., Vol.
1, No. 2, Apr-Jun 2004.

[5] Özgül, M.: Deeg, F.:, Sattler, S.M.: Mealy-to-Moore
Transformation - A state stable design of automata.
ASTES Jorunal, Vol. 2, Issue 6, Page No 162-174, 2017.

[6] Elbably, M.E.: State Machine Transition to avoide the
Race Conditions in Asynchronous Sequential Logic Cir-
cuits. 7th Nat. Radioscience Conf.,Feb. 22-24,2000.


