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This paper proposes an asynchronous RISC-V CPU design based on self-
locking domino logic. The asynchronous approach offers advantages over 
traditional synchronous designs, including improved performance, lower power 
consumption, and greater modularity. The paper details the design and 
implementation of the asynchronous control unit using domino logic on an 
FPGA development board. The control unit is designed for a Turing-complete 
32-bit RISC-V architecture. A significant aspect of the design is the self-locking 
mechanism, which ensures that the circuit only unlocks after all processing 
stages have been completed. This eliminates the need for a global clock and 
simplifies hazard-free operation. Furthermore, the paper discusses the potential 
for parallelizing the ALU using domino logic to improve performance further. 
The implementation of the asynchronous CPU has been analyzed in terms of 
power, performance, and area using the Vivado Design Suite. The power analysis 
indicates that the asynchronous processor consumes considerably less power in 
the clock network compared to its synchronous counterpart, thereby underscoring 
its energy efficiency. A performance analysis using the SPECint2000 benchmark 
suite demonstrates a 10% increase in performance, while only using slightly 
more area. These findings illustrate the asynchronous processor’s potential for 
performance-critical applications while maintaining energy and area efficiency. 
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Introduction 

 
Synchronous circuits represent the state of the art in circuit design. Still, 

asynchronous circuits are becoming increasingly important as they offer numerous 
advantages over synchronous circuits (performance, power consumption, modularity, 
no single-point-of-failure, no clock skew, etc.) (Sparsø 2001). Asynchronous circuits 
are also more resilient to fluctuations in the supply voltage and temperature. Local 
faults in asynchronous designs are often limited to the affected area, which increases 
fault tolerance. Furthermore, they generate less electromagnetic interference and are 
therefore more suitable for applications in which electromagnetic compatibility 
(EMC) plays an important role (Bouesse et al. 2007). However, the advantages of 
this approach are also offset by disadvantages, including the necessity for more 
complex design methods and an associated lack of design tools. 

Field Programmable Gate Arrays (FPGAs) are a special hardware component 
distinguished by their high performance, flexibility, and energy efficiency. In 
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contrast to conventional integrated circuits (ICs), which are pre-programmed for a 
specific function, FPGAs can be reconfigured after manufacture to undertake new 
tasks or optimize performance. This feature renders them an optimal platform for 
the development of demanding applications that require high computing power, 
low latency, and customizability. 

For a considerable period, the market for processors was divided between two 
architectures: x86 and ARM, which are mainly used in mobile devices. In recent 
years, however, a new player has joined them and is providing a breath of fresh air 
in the form of RISC-V. RISC-V is a license-free instruction set architecture (ISA) 
that originated at the University of California, Berkeley (Waterman 2016). In 
contrast to x86, which has grown historically and is complex, RISC-V was 
developed from scratch. The principle of simplicity was prioritized. This simplicity 
is intended to minimize hardware costs on the one hand and increase flexibility on 
the other. RISC-V is becoming increasingly important in the processor world. One 
decisive factor is that it is license-free. This enables various companies and 
research groups to develop and utilize processors based on RISC-V. This has led to 
a wide variety of RISC-V processors that are used in different areas. The spectrum 
ranges from energy-efficient devices in the Internet of Things (IoT) to high-
performance computers. Although RISC-V has not yet reached the market share of 
x86 and ARM, its growth potential should not be underestimated. The simplicity, 
flexibility, and license-free nature of RISC-V make it an attractive option for many 
developers. Other positive aspects of RISC-V include its energy efficiency, 
scalability, and security, as the basic architecture of RISC-V is so simple and offers 
little scope for attack. 
 
 
Structure of the Paper 

 
A brief literature review is conducted to distinguish this paper from others in 

the field. The following section presents the circuit structure, which comprises the 
self-locking pulse circuit, the dual-rail domino logic circuit, and the entire pipeline 
with completion detection and its realization in the FPGA. Subsequently, an 
existing synchronous multicycle RISC-V processor is briefly introduced, after 
which a control automaton for this Turing-complete processor is realized as a 
domino logic pipeline. It demonstrates how the pipeline can be utilized to control a 
globally asynchronous locally synchronous (GALS) system that can be arbitrarily 
divided into subcircuits to achieve the highest possible speed and safety. The 
subsequent chapter deals with the results and a comparison with synchronous 
automata. Finally, a conclusion and future work are presented. 
 
 
Related Work 

 
 Dooply and Yun (1999) presented a method for optimizing clocking in self-

resetting domino pipelines. This method employs soft synchronizers and roadblocks 
to allow time borrowing, thereby maximizing throughput and eliminating latch 
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overhead. The authors introduced a high-performance clocking methodology for 
self-resetting domino pipelines that optimizes the clock rate through time 
borrowing and robust handling of clock skew while eliminating latch overhead. 
However, their approach does not adequately simplify the complex clocking and 
synchronization management or provide a robust precharge management system, 
nor does it adequately simplify the complex clocking and synchronization 
management or provide a streamlined implementation and testing methodology. 
Jung et al. (2002) presented a high-speed add-compare-select (ACS) unit for 
Viterbi decoders using locally self-resetting CMOS (SRCMOS), which achieves 
significantly higher data rates compared to static and domino CMOS designs. This 
approach is associated with higher power consumption and increased design 
complexity due to the need for careful device sizing and additional components. In 
contrast, Jung et al. (2003) introduced a dual keeper structure and delay logic gates 
to enhance the performance and noise margin of domino logic gates, ensuring 
high-speed switching and robustness to noise and timing variations. However, 
their approach introduces additional design complexity and lacks a focus on 
scalability issues 

In (Litvin and Mourad 2005) they presented the development of dual-rail self-
resetting logic gates with input disable (DRSRLID) for fast and power-efficient 
arithmetic operations. They also demonstrated the application of these gates in a 
16-bit parallel adder. However, their work primarily focuses on arithmetic circuits 
and does not extensively validate the logic in broader applications or address 
implementation complexity. 

Alsharqawi and Einioui (2006) proposed two novel synchronization approaches 
for clockless pipelining of coarse-grain datapaths using self-resetting stage logic 
(SRSL) to achieve high throughput. The approach suffers from scalability issues 
and increased implementation complexity. Ramadass et al. (2014) introduced the 
Self Resetting Logic with Gate Diffusion Input (SRLGDI) technique to create low-
power, high-speed logic circuits and demonstrated its effectiveness through the 
design and simulation of various adders. However, their approach increases transistor 
count and design complexity. The method of designing high throughput and ultra-
low power asynchronous domino logic pipelines based on a constructed critical 
data path was introduced in (Xia et al. 2015). However, their approach does not 
fully address the challenges of design automation, placement, routing optimization, 
and timing verification. The implementation of low-power and high-performance 
asynchronous dual-rail interconnect using domino logic gates in 16-nm technology 
was proposed in (Rezaei and Moghaddam 2016). The integration of self-locking 
mechanisms or the detailed implementation of a complete RISC-V pipeline 
controller remains an issue. Sokolov et al. (2020) introduced a novel framework 
for automating the design of asynchronous logic control in AMS electronics, 
integrating formal verification and specialized analog-to-asynchronous interface 
components for handling non-persistent signals. It does not fully address the 
challenges of comprehensive design automation and efficient handling of 
nonpersistent signals within the FPGA implementation. Li et al. (2021) presents a 
methodology for implementing asynchronous phase-decoupled circuits using 
traditional electronic design automation (EDA) tools. The authors present an 
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asynchronous RISC-V processor implemented on the Xilinx ZCU102 FPGA, 
achieving a threefold improvement in dynamic power efficiency compared to its 
synchronous counterpart, while maintaining similar resource utilization. The 
approach demonstrates the potential of asynchronous design in reducing power 
consumption for IoT and neuromorphic applications, despite challenges in 
commercial tool support. 

This work builds on the work in (Deeg and Sattler 2024), which focused on 
structural feasibility in the FPGA. In this paper, the design of the automaton and in 
particular the low-level design is described in more detail, with results of the 
asynchronous implementation. 
 
 
Self-locking Domino Logic 

 
This section presents the structure and realization of the self-locking domino 

logic in the FPGA. The delay-insensitive domino logic was selected to minimize 
constraints in the design process while maintaining hazard-free and race-free 
operations. This approach contrasts with one-step designs (Deeg et al. 2020), where 
complex algorithms are employed to construct the automaton without clocking. 
The programming in the FPGA occurs at the lowest level of abstraction to ensure 
that the structure is built in the same way, without the software attempting to 
optimize the structure. This is because the synchronous optimization process is 
used to build the structure. The asynchronous design cannot be simulated, so it 
must be built in accordance with the structure and verified with tests. This is to 
ensure that any known error models are excluded. The structural comparison of 
domino logic on the FPGA was conducted in (Deeg and Sattler 2024). This section 
will subsequently discuss the individual realizations in the FPGA at the low level. 

 
Globally Asynchronous Locally Synchronous (GALS) 

 
GALS is a design methodology for electronic circuits. It addresses the 

challenge of ensuring safe and reliable data transfer between independent clock 
domains within a system. A GALS system breaks down the circuit into independent 
blocks, each with its own local clock. These blocks communicate with each other 
asynchronously using handshaking protocols (Krstic et al. 2007). This allows for 
flexibility because blocks can operate at different speeds based on their needs, and 
scalability because the system can be easily expanded without worrying about the 
global clock. Furthermore, the GALS methodology results in reduced power 
consumption, as only active blocks are clocked, thereby increasing the system’s 
power efficiency. 

 
Asynchronous Handshake Protocol:  

An asynchronous handshake protocol represents a communication agreement 
between two or more entities that allows them to exchange data without the 
necessity of a common clock (Chapiro 1984). In contrast to synchronous protocols, 
which rely on the timing of a common clock to regulate communication, 



Athens Journal of Technology & Engineering September 2024 
 

205 

asynchronous handshake protocols employ a pair of signals to regulate data 
transmission. The initial signal is used to initiate the transmission of data (REQ), 
while the subsequent signal is utilized to confirm the successful completion of the 
data transmission (ACK). 

 
Pulse Circuit 

 
The purpose of self-locking is to enable the system to be unlocked again only 

once the circuit branches have been run through once and brought into a valid 
state. The input pulse circuit, which locks the input, can be seen in Figure 1.  

 
Figure 1. Pulse Circuit for Self-locking and Duty Cycle 

 
The self-resetting input pulse circuit is employed for self-locking, whereby 

the input is directly locked following an initial pulse (REQ), and a precharge phase 
for the domino logic is initiated by the circuit’s self- resetting feedback, subsequently 
disabling the input. The duration of the self-reset determines the length of the 
precharge phase. It is therefore necessary to ensure that the precharge phase is long 
enough for all internal nodes to be pulled to . Once this has been achieved, the 
dual-rail domino logic gates (DRDL) have no disjunctive outputs and then trigger 
the evaluation phase after the system has self-reset. The rising edge of dc then 
initiates the transfer of states and input signals to a D-FF at the input, where they 
are stabilized until the next evaluation phase. The circuit thus blocks the input, 
generates a duty cycle, and ensures stable signals during the evaluation step. Once 
the following block is done it will set an enable signal to 1 (ACK) and unlock the 
input again. 
  

(a) Self-resetting D-FF (b) Symbol 
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Domino Logic 
 
Figure 2. Single Rail Domino Logic on Transistor Level (TL) 

 
 

The domino logic is an asynchronous logic family based on the principle of 
the domino effect (Hodges et al. 2004). The domino effect describes the chain 
reaction that occurs when one domino falls and knocks over the next in a row. In 
domino logic, these effects are used to transmit data through a switching network. 
Domino logic offers the aforementioned advantages of asynchronous circuits over 
traditional synchronous logic families. The general mode of operation of a domino 
logic gate can be divided into two phases: precharge and evaluate. A domino gate 
represents the fundamental unit of construction in domino logic. It is composed of 
two transistor circuits, one for the pull-up phase and one for the pull-down phase, 
which is composed into a single unit, see Figure 2, where an example for an 
AND2 domino gate is given. In the precharge phase, the inner node is charged to 

, and the logic state after the inverter is 0. If we then switch to the evaluate 
phase, i.e. our duty cycle switches from 0 to 1, the node is pulled to GND when 
the Pull-Down is active (i.e., the equation is fulfilled) and logic 1 is present at the 
output. Domino logic gates can now be connected in series and propagate through 
the pipeline. As the goal is to design asynchronously and recognize the transition 
through the gate, DRDL gates are employed, see Figure 3. These have an output  
and the complementary output . The same principle applies here: first comes the 
precharge phase and then the evaluation phase. In the PC phase, both inner nodes 
are pulled to , the outputs are equivalent in their output value of logical 0, and 
then in the evaluation phase, one output becomes 1, while the other remains 0 due 
to the disjointness. This allows for the direct recognition of whether the domino 
gate has finished switching or not by linking both complementary outputs with an 
XOR. The dual-rail circuit thus provides a means of determining whether the 
circuit is in a valid state (i.e., the switched state) or an invalid state (i.e., the 
switching process is still underway). This information is always available, 
allowing the user to ascertain whether the circuit is currently occupied or ready for 
new data. 
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Figure 3. Dual Rail Domino Logic 

 
 

Pipeline with Completion Detection 
 
Domino gates can now be composed serially in such a way that a pipeline is 

created, which is operated sequentially, i.e. not pipelined. This is achieved by 
assigning a separate state for each transfer of a 1, i.e. each domino effect to the next 
stage. In principle, however, real pipelining can also be used with the corresponding 
holding elements between the stages. However, this would not be a viable approach 
for the processing of instructions and the multicycle processor in question. The 
serial composition is performed by setting up the dominoes from the first stage  

to the last stage  to form . 
Firstly, all domino gates are subjected to a preliminary charge which is designed to 
energize the internal nodes to a voltage of  and set the outputs to a value of 0. 
The evaluation phase then pulls each DRDL gate in a path to 0, thus producing a 1 
at one output of F and F. The system is then complete as soon as all DRDL gates 
are complementary to each other, which in turn unlocks the input. The input pulse 
therefore serves as a request signal and the  signal as an acknowledgment, so 
this is the asynchronous handshaking protocol. In the pipeline circuit, it is 
generally sufficient to check only the last stage for disjunctivity, as the last stage 
can only switch as soon as the previous one has switched. However, we have 
conducted a comprehensive analysis of all stages for disjunctivity, i.e. we have 
applied an XOR operation to each stage and rounded the results to ensure that each 
individual gate has switched and thus enhance safety. 
 
Low-Level Primitives Design 

 
The realization of our circuits is accomplished through the use of the Arty A7 

Artix-7 FPGA Development Board, which is provided by Digilent and contains an 
FPGA manufactured by Xilinx Inc. The FPGA is programmed with the Vivado 
Design Suite (VDS) at a low-level in order to precisely define how the structures 

 (a) DRDL on TL  (b) DRDL as LUT6 2 on FPGA 
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are generated within the FPGA (what you see is what you get). The primitive libraries 
from ARTIX-7 (UG953 2012) are employed for this purpose. Two commands have 
emerged as pivotal: firstly, the ability to incorporate combinatorial loops into the 
constraints, and secondly, the don’t touch commands to prevent the VDS from 
modifying any settings. The design is currently still completed manually but will 
be automated in the future. The logical design is based on look-up tables (LUTs). 
These LUTs are typically multiplexers that switch exactly one path to the output, 
depending on the input assignment. They are constructed in the shelf from NMOS 
pass transistors or transmission gates (Chiasson and Betz 2013). These low-level 
primitives can now be initialized as shown in the code snippet below. 
 
Listing 1. Low-Level LUT6_2 for AND2 DRDL Gate 
1.  LUT6_2_inst : LUT6_2 generic map (   
2.  INIT => X"800000007FFF0000") -port map (   
3.  O6 => f_int, -- 6/5-LUT output (1-bit)   
4.  O5 => fbar_int, -- 5-LUT output (1-bit)   
5.  I0 => ’1’, -- LUT input (1-bit)   
6.  I1 => ’1’, -- LUT input (1-bit)   
7.  I2 => x_int(0), -- LUT input (1-bit)   
8.  I3 => x_int(1), -- LUT input (1-bit)   
9.  I4 => _dc, -- LUT input (1-bit)   
10.  I5 => ’1’-- LUT input (1-bit)   
11.  );   

 
To realize dual-rail domino logic circuits, it has been decided that the LUT6_2 

will be employed, as this structure allows for two disjoint outputs when input 5 is 
clamped to . However, this does entail a tradeoff in that one input is no longer 
available for use, and the number of table entries is reduced from 26 to 25. For 
designs with a maximum of five inputs, however, this has no negative effects. The 
LUT is initialized with a hexadecimal number, in this case, the realized function is 

 for positive Pin and  

for the complementary . To generate the duty cycle for our self-locking input pulse 
circuit, a D-FlipFlop is used that is permanently connected with one at the input and 
briefly goes to one on the positive edge of P and resets itself asynchronously after a 
duration . The low-level primitive of an FDCE, which is a D-FlipFlop with Clock 
Enable and Asynchronous Clear, is employed for this purpose. A code snippet for 
our feedback pulse circuit is provided in reference to the FDCE. 
 
Listing 2. Low-Level Self-Resetting Pulse Circuit 
1. INIT => ’0’) -- Initial value port map ( 
2. Q => dc, -- Data output 
3. C=> P, -- Clock input 
4. CE => ’1’, -- Clock enable input 
5. CLR => dc, -- Asynchronous clear input 
6. D=> en -- Data input 
7. ); 
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Parallelization of Domino Gates 
 
As previously stated, switching can also occur in parallel, rather than in a 

cascaded manner. This is because the switching processes have a clear direction 
and a clear end, due to the disjunctivity of the components and the self-clocking 
enables hazard-free operation. This is because the circuit only unlocks as soon as 
all the switching parts are disjoint to each other. It is therefore also conceivable, for 
example, to design the arithmetic logic unit (ALU) in parallel as a dual-rail 
domino gate to maintain the minimum processing delay by communicating with 
the controller using the handshake protocol and switching the individual gates in 
parallel until they are all disjoint. In this instance, the individual domino gates are 
composed in parallel to form  
 
 
Implementation for RISC-V Processor 

 
RISC-V represents a flexible and energy-efficient alternative to the dominant 

Reduced Instruction Set Computer (RISC) and Complex Instruction Set Computer 
(CISC) architectures. The simplified instruction set at the core of RISC-V is small 
and orthogonal, allowing for a thriving ecosystem of innovation. This simplified 
approach reduces the hardware requirements and improves overall performance by 
eliminating the complexity and overhead associated with complex instruction sets. 
The paper presents the design of a control unit for a 32-bit Turing-complete RISC-
V architecture. 

 
Synchronous Multicycle Central Processing Unit (CPU) 

 
We will now briefly introduce the initial processor (Harris and Harris 2021), 

see Figure 4. It is a synchronous processor that is Turing complete, which means 
that it can calculate all Turing-computable functions. The processor is realized as a 
multicycle processor in order to design the different access times for different 
instructions in a way that allows for the division of an instruction into different 
individual steps. This is in contrast to a single-cycle processor, where the worst-
case path for the entire instruction is considered. Instead, in this case, the worst 
case for the individual processing steps is considered. However, the processor 
employs a Harvard architecture, which is evident from the fact that it has separate 
data and instruction registers in a block random access memory (BRAM) (i.e., 
with two different addresses). 
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Figure 4. Synchronous CPU and the Synchronous State Transfer Function  

 
 
Synchronous Control Unit 

 
To be Turing-complete, the instructions given with the opcode in Table 1 are 

implemented. In order to process the instructions, an automaton is generated that 
was derived from RISC-V and uses the input opcode 6:3 to decode the individual 
states. In contrast to Harris and Harris (2021), a few states were added because the 
memory access requires two clock cycles, for example. Consequently, the 
multicycle processor is divided into the branches load, store, r-type, i-type, b-type, 
and jal, with the clock cycles split up in order to achieve shorter access times, see 
Figure 5. 

 
Table 1. Instructions 

 
This results in the longest instruction load and the shortest branch-if-equal 

(BEQ). A single-cycle processor would now cover the worst case for all instructions, 
whereas the multicycle processor saves three cycles for NEQ. It is evident that the 
differing access times of the instructions justify the necessity of the multicycle 
processor. The automaton was then constructed as a Moore machine, with each 
state having a single output. The synchronous automaton was then designed at the 
high-level with optimizations from VDS. 
  

Branch OPCode Name 
L 0000011 Load 
I 0010011 I-Type 
S 0100011 Store 
R 0110011 R-Type 
B 1100011 B-Type 
J 1101111 JAL 

(a) Architecture Synchronous CPU 

(b) Signal Flow Plan of Control Unit 
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Figure 5. Automaton Graph of synchronous Moore Machine 

 
 
Design of the Asynchronous Controller 

 
The circuit is then implemented in the synchronous RISC-V processor. The 

asynchronous handshaking protocol can significantly enhance the processor’s 
performance, as it allows for different access times for different process steps (e.g., 
writing memory is much slower than addressing the reg file). Since the domino 
logic is realized as a pipeline, there is also a direct transfer to pipelines, but this 
application is not addressed further in this paper. In order to facilitate the design of 
a pipeline cascade, which is a more complex process in domino logic, we will 
implement a Mealy automaton that can generate different output values for its 
states depending on the input signal. In contrast to the synchronous Moore 
automaton, which has predefined processing times for the various instructions, the 
Mealy automaton is clocked externally by REQ and ACK. This means that the 
same states for different instructions can have different access times. Consequently, 
the states are superimposed and the edges are retained. Furthermore, self-locking 
can be applied to the output function, which negates the need for hazards and other 
potential issues. This results in a reduction in hardware requirements compared to 
the Moore Machine. The individual states were then encoded one-hot to enhance 
clarity in the domino output in the z-variables. The automaton graph for the pipeline 
can be seen in Figure 6 and its structure in Figure 7. Edge A is the opcode of the 
BEQ branch, since it only needs three states, B is given by R-type, I-type and JAL 
branches, C is the edge for the Store instruction, and the Load instruction gets to 
the last state [100000]. 
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Figure 6. Automaton Graph Pipeline 

 
 

Figure 7. Structure of realized Pipeline in FPGA 

 
 
Design of an Asynchronous ALU 

 
To more effectively illustrate the advantages of the asynchronous handshake 

protocol, we have elected to configure the ALU as a parallelized, self-locking 
domino logic. Given the considerable time required to access the ALU, the self-
clocked variant represents a promising improvement. In the following section, we 
will utilize the AND instruction as a case study in domino logic, with the objective 
of elucidating the design process. The starting point is an asynchronous ALU, 
which we wish to convert into a domino logic. The bitwise AND can be implemented 
straightforwardly by utilizing the AND structure of a domino gate and combining 
each position of the 32-bit word in dual-rail. This can be accomplished entirely in 
parallel. The independence of all dual-rail gates then indicates whether the ALU 
has undergone rounding, allowing the input to be unlocked by setting the  signal 
(ACK) to 1. The code snippet for the ALU’s AND function as DRDL AND2 is listed 
below. 
 
Listing 3. Low-Level 32-Bit DRDL AND 
1. MY_GEN : for i in 0 to 31 generate 
2. DominoGate: dualRail port  
3. map( dcbar => dc, x(0)=>’1’, 
4.  x(1)=>’1’, x(2)=>reg_b(i),  
5. x(3)=>reg_a(i), f_out=>f_int(i),  
6. fbar_out=>fbar_int(i) ); 
7. CompletionDetection:  xor_LUT port  
8. map( A => f_int(i), 
9. B => fbar_int(i), 
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10. Y => xor(i) 
11. );  
12. process(dc)  
13. begin 
14. if(falling_edge(dc)) then  
15. f_out(i)<= f_int(i);  
16. fbar_out(i)<= fbar_int(i); 
17. end if;  
18. end process; 
19. end generate;  
20. process(xor) 
21. begin  
22. if(xor=x"FFFFFFFF")  
23. then  
24. en_int<=’1’; 
25. else  
26. en_int<=’0’; 
27. end if;  
28. end process; 

 
The resulting structure of the AND for ALU in Self-Locking Domino Logic 

can be seen in Figure 8. Furthermore, the input incorporates a self-locking pulse 
circuit that generates a duty cycle, thereby initiating the precharge phase. This is 
followed by a scan of the source registers of the ALU multiplexers, after which the 
input is unlocked when each of the 32 DRDL gates has disjoint outputs. 
 
Figure 8. Domino Logic ALU 

 
 
Integration in the CPU 

 
The self-locking machine can now be readily incorporated into the existing 

CPU and controlled via the clock, for instance. While this does not immediately 
enhance performance if the other processor components do not exhibit GALS 
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behavior, it demonstrates the simplicity of integrating self-timed circuits. Furthermore, 
self-timing necessitates fewer FFs, which consequently results in reduced power 
consumption. To illustrate the advantages of asynchronous handshaking, the DRDL 
ALU was also integrated. The controller oversees the operation of other components 
in a synchronous manner, while simultaneously initiating the asynchronous handshaking 
process with the ALU, thereby accelerating the execution of instructions that utilize 
the ALU. 
 
 
Power Performance and Area (PPA) Results 

 
The PPA analysis of the implemented asynchronous processor on an FPGA 

definitively shows its efficiency and viability for various applications. This section 
presents the findings from the synthesis, implementation, and simulation processes 
using the Vivado Design Suite. The results are presented in three subsections: 
Power Analysis, Performance Analysis, and Area Analysis. 

 
Power Consumption 

 
The power consumption shares of the individual processors were obtained 

from the Vivado Power Analysis Tool, see Figure 9. 
 

Figure 9. Power Consumption of the CPUs 

 
 
The total dynamic power consumption of both the asynchronous and 

synchronous processors is nearly similar, which can be attributed to the parallel 
operation of the asynchronous processor. However, the asynchronous design 
achieves substantial power savings in the clock network, as evidenced by the 
lower percentage of power consumption dedicated to clocks in the asynchronous 
processor compared to the synchronous one. This highlights the efficiency of the 
asynchronous processor in minimizing clock-related power, which is a critical 
factor in overall power management and energy efficiency. 

 
  

(a) Asynchronous CPU (b) Synchronous CPU 



Athens Journal of Technology & Engineering September 2024 
 

215 

Performance Analysis 
 
In this section, we assess the efficacy of our asynchronous CPU design by 

contrasting it with a synchronous CPU using the SPECint2000 benchmark suite. 
SPECint2000 is a well-established benchmark that measures the performance of 
CPUs with integer-heavy workloads, providing a comprehensive assessment 
through a variety of real-world applications. The benchmark is composed of 
approximately 25% loads, 10% stores, 11% branches, 2% jumps, and 52% R- or I-
type ALU instructions. The diverse range of operations included in the SPECint2000 
benchmark makes it an optimal tool for evaluating and comparing the performance 
characteristics of different CPU architectures. The objective of this analysis is to 
highlight the advantages and potential trade-offs of the asynchronous CPU design 
in comparison to its synchronous counterpart. A loop was constructed around the 
test code with a branch-if-equal (BEQ) instruction using a clock frequency of 
100MHz, and the throughput of the asynchronous and synchronous CPUs, as well 
as the average duration per instruction were determined (see Table 2). 
 
Table 2. Performance Metrics 
Parameter Asynchronous CPU Synchronous CPU 
Throughput (MIPS) 25.64 22.73 
Average Latency/Instruction 39.5 ns 44 ns 

 
The analysis shows, that the CPUs Performance for the SPECint2000 

benchmark increased by around 10% simply by letting the control unit and the 
ALU do handshaking using DRDL Gates. 

 
Area Analysis 

 
The area analysis focuses on the utilization of FPGA resources, including 

LUTs, Slice Registers, F7 Multiplexers (F7 Muxes), and Slices. The asynchronous 
design utilized 6.67% of the available LUTs, indicating a moderate complexity in 
logic implementation. The design also employed 4.85% of the available slice 
registers, and leveraged 4.63% Slices. As anticipated, the area utilized exhibited an 
increase, yet remained within the anticipated range due to the implementation of 
DRDL gates within a single LUT. 

 
Table 3. FPGA Resource Utilization 

Resource Type Utilization in (%) Async Utilization in (%) Sync 
LUTs 6.67% 6.32% 
Slice Registers 4.85% 4.9% 
Slices 9.27% 8.9% 

 
Discussion 

 
The PPA results indicate that the asynchronous processor demonstrates 

significant potential in terms of performance, which is crucial for performance-
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critical applications. While there was a narrow change in power consumption, the 
area analysis shows a balanced utilization of FPGA resources, thereby highlighting 
the feasibility of implementing such designs within reasonable silicon area 
constraints. 
 
 
Conclusion and Future Work 

 
This work proposes an asynchronous RISC-V CPU design based on self-locking 

domino control. The asynchronous approach offers advantages over traditional 
synchronous designs in terms of performance, power consumption, and modularity. 
The paper describes in detail the design and implementation of the asynchronous 
control unit using domino control on an FPGA development board. The control 
unit is designed for a Turing-complete 32-bit RISC-V architecture. A significant 
aspect of the design is the self-locking mechanism, which ensures that the circuit is 
not released until all processing stages have been completed. This eliminates the 
need for a global clock and simplifies error-free operation. Furthermore, the paper 
discusses the possibility of parallelizing the ALU using domino control to further 
improve performance. Subsequently, the paper illustrates the straightforward 
integration of the asynchronous control unit into an existing synchronous central 
processing unit (CPU), thereby demonstrating the potential benefits of self-timed 
circuits. Ultimately, the PPA analysis of the implemented asynchronous processor 
on an FPGA substantiates its considerable potential for diverse applications. The 
power analysis indicates that while the total dynamic power consumption of the 
asynchronous processor is comparable to that of the synchronous processor, it 
achieves a significant reduction in power consumption within the clock network. 
This underscores the asynchronous processor’s efficacy in curbing clock-related 
power consumption, a pivotal aspect of comprehensive power management and 
energy efficiency. A performance analysis conducted using the SPECint2000 
benchmark suite revealed that the asynchronous processor exhibited superior 
performance compared to the synchronous processor, demonstrating a 10% 
increase in throughput and a reduction in average latency per instruction. This 
performance enhancement is achieved through the use of handshaking with DRDL 
gates in the control unit and ALU. The area analysis indicates that the asynchronous 
design employs FPGA resources in a moderate manner, exhibiting a slight increase 
in LUT, slice register, and slice utilization in comparison to the synchronous design. 
Despite this increase, the resource utilization remains within acceptable limits, thereby 
substantiating the feasibility of implementing the asynchronous processor within 
reasonable silicon area constraints. In conclusion, the asynchronous processor 
exhibits notable advantages in terms of power efficiency, performance, and area 
utilization, thereby establishing its viability as a potential solution for performance- 
critical applications. 
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